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ABSTRACT

The acoustic radiation damping for various isotropic and laminated composite
plates and semi-infinite strips subjected to a uniform, subsonic and steady flow has
been predicted. The predictions are based on the linear vibration of a flat plate. The
fluid loading is characterized as the perturbation pressure derived from the linearized
Bernoulli and continuity equations. Parameters varied in the analysis include Mach
number, mode number and plate size, aspect ratio and mass. The predictions are
compared with existing theoretical results and experimental data. The analytical
results show that the fluid loading can significantly affect realistic plate responses.
Generally, graphite/epoxy and carbon/carbon plates have higher acoustic radiation
damping values than similar aluminum plates, except near plate divergence conditions
resulting from aeroelastic instability. Universal curves are presented where the
acoustic radiation damping normalized by the mass ratio is a linear function of the
reduced frequency. A separate curve is required for each Mach number and plate
aspect ratio. In addition, acoustic radiation damping values can be greater than or
equal to the structural component of the modal critical damping ratio (assumed as
0.01) for the higher subsonic Mach numbers. New experimental data were acquired

for comparison with the analytical results.
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CHAPTER 1 INTRODUCTION

Structural vibration response to broadband random excitation, whether linear or
nonlinear, is largest in magnitude near the system natural frequencies. The maximum
magnitude is approximately inversely proportional to the system damping. Thus,
accurate maximum response predictions require equally accurate damping values.
Frequently, these values are derived from empirical methods and ‘experience’.
Modifications made a posteriori then force agreement between measurements and
predictions. For aircraft, the system damping may be separated into two components:
structural - primarily resulting from the structural joint motion; and acoustic radiation

(also known as aerodynamic) - resulting from the fluid/structure interaction.

Extensive acoustic radiation (or aerodynamic) damping research exists for
isotropic panels vibrating in supersonic flow [8, 9, 20, 26) and no flow conditions
[14, 16, 19, 22, 24, 28]. Supersonic aerodynamic damping frequently dominates the
structural damping. A simplified analysis called piston theory can approximate the
high supersonic aerodynamic damping or the very high frequency damping at any
Mach number. Very thin panels or membranes and heavy fluid loading account for
most of the no flow work. Strawderman [25] studied the effects of fluid loading on
plates for turbulent subsonic flows where the free stream velocity is much less than
the speed of sound. Abrahams [1] studied the fluid/structure interaction problem in
subsonic flow to calculate the onset of flutter or divergence instability. Additional
work has been done related to cylindrical structures [15, 23). For a recent view

of the subject see ref. [7].



This dissertation emphasizes the systematic evaluation of the subsonic acoustic
radiation damping component to determine its importance relative to the structural
component. The next chapter describes the acoustic radiation damping analyses of
thin semi-infinite strips and finite plates subjected to a uniform subsonic flow. Varying
parameters, such as Mach number or mass, produce the same trends for either the
semi-infinite strip or the finite plate. To decrease significantly the computation time,
these parameter effects have been evaluated using the semi-infinite strip. The finite
plate analysis has been utilized to show the effect of aspect ratio and composite ply
lay-up. Numerical damping results, including comparisons with previously published
data, follow the theory. Experimental modal frequencies and damping values are then
compared to the analytical damping values. Concluding remarks about the research

follow these comparisons.



CHAPTER 2 THEORY

2.1 General Derivation

Results for finite plates as well as semi-infinite strips are presented in the
dissertation. A full derivation has been given for the finite plate. Only semi-infinite
strip expressions that differ from the finite plate expressions are listed. The semi-
infinite strip equation numbers will end with an s. For example, Eq. (2.1s) is the

semi-infinite strip expression corresponding to the finite plate expression given in

Eq. (2.1).
2.1.1 Finite Plate

A simple, flat, plate is placed flush in a rigid, infinite baffle, with a subsonic
uniform steady flow over the plate, see Figure 2.1(a). Unless otherwise stated, only
the fluid effect on the upper surface is modelled in the analysis. Thus the cavity under
the plate or strip is ignored. The static pressure in the cavity is assumed to be the
same as that on the upper surface so that no static deformation of the plate exists. The
analytical model for the statically deformed plate or strip case requires a nonlinear
analysis, which is not pursued here. Realistically, air in the cavity has little effect on
the frequency ratio. However, the damping is under predicted by the amount for the

air on the lower surface corresponding approximately to a flow at M=(.

The differential equation for a thin, symmetrically laminated, composite plate

in linear vibration is [13]:

tw tw tw
D11_3$4 +2(Dh2 + 2D66)_8I26 5 + D2y oy
dw o'w Pw ‘
+41716a 39y +4D268 By 5+ ph 50 = f. (2.1)



The force, f, is divided into two components: the fluid pressure at = = 0, pl._:
and the mechanical force per unit area, f.

The perturbation pressure model, derived from the linearized Bernoulli and
continuity equations for isentropic, inviscid, nonconducting, irrotational flow with no

body forces, is related to the velocity potential by (3, 8, 9]:
3}
p=—po(at + Uo=— )¢, (2.2)
where the differential equation for the velocity potential field is:

a2
v2¢——(§t+an )¢=0. (2.3)

The boundary condition on ¢ is:

@

- (6 . ) (2.4)

6t Oz

In addition, ¢ must be finite for z — oo and waves induced by the plate motion
must radiate from the plate.

Assuming sinusoidal motion, ie., w(z,y,t) = W(z,y)e!*!, p(z,y, z,t) =
P(z,y,z)el*?, é(z,y,2,t) = ®(z,y,z)e!*", f(z,y,t) = F(z,y)e’™" then Egs.

(2.1-2.4) become

rw otw o*w
Du——+2(D12 + 2Dss) 557~ + Doa——
Oz 0z20y dy (2.12)
+4D 64—W+4D AL hw?W + P|,—g = F. |
: d
P = —py (Jw + Uob—) o, (2.2a)
T
2
val B8 i2 (jw + i) ¢ =0, (2.3a)
c§ Jz



and

od , 0
Elz..o = (Jw + Uy '8—;) w. (2.4a)

Solving for the velocity potential by first taking the Fourier Transform of Eq.

(2.3a), where the Fourier Transform pair for 2-dimensions is given by [11, 8]:

[o olENN e ]
(e,7,2 / / O(z,y,z)e @) 4z dy (2.5a)
-0 —0C
and
®(zy,2) = 41?/ / ®*(a, 7, 2)e’ T dady, (2.5b)
00 — 00

then Eq. (2.3a) becomes:

, Uo\? oo _ , 2ot Wt
[(10)2<1 - (;;l) ) — 2jwlja/cy + (j7) }<P otz =0 26

0

Rearranging terms:

d2q)* 2
7 = [ ( M2) - ‘)ona/c(, + 7 - :)—:I o, (27)
o

Now for 7% = o?(1 — M?) - 2wlpa/ck + 4% - w?/c?, the solution to Eq. (2.3a)

can have two forms depending on the sign of 2. If %> 0,
&' = Ae™ + Be™™, (2.82)
and if 5%< O then,

&% = Cel™ 4 De™ 777 (2.8b)



where 772 = —n?. Evaluating the coefficients in Eq. (2.8) requires four conditions.
In Eq. (2.8a), ®*; must be bounded as z — oo, so that A = 0. In Eq. (2.8b),
the waves must be outgoing. Thus, by including the time dependence, ¢, in the
velocity potential, then C = 0.

Applying the boundary condition at z=0, to Eq. (2.8), with the Fourier Transform,
Eq. (2.5), to solve for B and D, then the velocity potential for, 2> 0 is:

o= ZIwH 77Uoor)W -~ (2.92)

and for 7°< 0 is:

—j(w +'U0‘1)W*e—1'f/z.
in

o} (2.9b)

Eq. (2.9) is substituted for the velocity potential in the Fourier Transform version
of Eq. (2.2a) at z=0, to yield:

polw + an)ZW*

P*l=0=_
1iz 7

(2.10a)

and

p(](w -+ U(,a)zw*

P}limo = — , (2.10b)
71

The single difference in form between the above two expressions is that n in Eq.

(2.10a) has been replaced by j7j in Eq. (2.10b). The remaining equations are written

using 7 with the understanding when 7%< 0, then 7 should be replaced with j7).
Solving for the pressure on the plate using the inverse Fourier Transform, then

Eq. (2.10a) becomes:

<% W* —j(az+7y)
Ply=0 = P / / w + Uoa) drdy. (2.11)
o0 —00

r2



Now expressing the plate deflection by an in-vacuuo modal expansion:

N
W=>Y AW, (2.12)
where,
o o* ot
Diig— +2(Dz + 2D66)a Ew Dzza—y;
o o 2 2
+ 4D16-6.’L'3_6y + 4D26W — phw® | Wy, = phwiW,,. (2.13)

Then Eq. (2.1) may be rewritten as:

N
Z[phwﬁ — phw?| A W, + Pl;:o =F. (2.14)

n=1

Applying Galerkin’s method, i.e. integrating Eq. (2.14) by

and utilizing the orthogonality of W,, and W, then

Js Pl,_oWmdS  [¢ FW,.dS
Js WaWmdS ~ T, W W,dS"

ph(w? — W) Am + (2.16)

where, § is the plate area, ab. A uniform plate mass is assumed here; however,
a non-uniform mass distribution could be handled with little additional difficulty.
Interchanging the order of integrations and summation simplifies the evaluation of
the second term numerator, so that:

(o + the)
oo © (W 0
/SP| WmdS = EA{”“/ ~ 7

n=1 —0Q J—00 77

a b . a b )
[/ / Wne_](°z+7y)da:dy] [/ / WmeJ(°I+7y)(lm(1y] (lad'y}. (2.17)
o Jo o Jo



If W, is expressed as the summation of classical modes (such as products of beam
functions) then the integrations over the plate area have a closed-form solution.
By interchanging the integrations and summation only one numerical integration
is required.

Eq. (2.16) expressed in nondimensional parameters is:
(0% - 02 {4} + w2 [jErn(k M) 4 CPMk MD]{A) = B (218)

The acoustic-radiation damping is represented by xf22C; and the effective mass
or stiffness by u£2°C,.
Substitution of Eq. (2.17) into Eq. (2.16) and comparing to Eq. (2.18) gives

Magy\?

o mn 1 00 00
JCI (kvM,l)+C2 (k,M,l): m[m[m (1+
o [GR"(20,70) + jGT'" (20, 70)ldexodyo

\/agu — M2) 4 1242 — %kMay — K2

(2.19)

where a9 = ae and vy = vb. Solving for Cy and C, independently, then the
damping term is:

C (k M l l:// 1 Mo ) ( 0 ") a()(l ;
1 + —k—ﬂ- (,'"1 . /
2 ! \/ 2(1 MZ 12 Vz + 2]CM(Y“ + kZ

1 + Mf‘l G'" (a0, v0)dagdyy
/ / L (2.20)
A2 Jod(1 = M2) + 1293 — 2kMay — k2

and the effective mass or stiffness is:

1 + Mﬁ"- GT™ (o, vo)dagdyy
R - )
i A y[-af — 1292 4 2kMaq + k?

1 + %‘1"- Gm (aa,v0)dapdyy
// . (2.21)
Az \/ (1 — M%) 4 1242 — 2kMay — k2



where:
11 11
$"+jG}""= //Wne JQOIOHWO)dedyO //Wmej(aozﬁa’oy")(I-T()(l!/u )
0 0 ¢ 0

A is the area inside the ellipse ad(1 — M?) + I*42 — 2kMay — k* = 0, and A,

is the area outside the ellipse.
2.1.2 Semi-infinite Strip

The semi-infinite strip is shown in Figure 2.1(b) for flow on one side. The
differential equation for a semi-infinite strip vibrating in an infinite baffle is:

B O -
D-ax—’f +p -7 2.15)

Utilizing the linearized Bernoulli and continuity expressions, Egs. (2.2a, 2.3a); the

boundary conditions given by Eq. (2.4a); and assuming sinusoidal motion, then:

oo ” '
- ‘W*e—laz
Plimg = 22 / (w + Upe) Wre da, (2.11s)
27r n
-_00
where: 7% = o?(1 — M?) - %ﬂﬂ — %:-

Again, expressing the strip deflection by an in-vacuuo modal expansion and
utilizing the orthogonality of Wy, and W,, then the result is given by Eq. (2.16),
where S is the strip length, a. Interchanging the order of integration and summation,

then the second term numerator is given by:

/P|z oWindS = ZA / “’+U°" /W ~jor g /W,,,e’ “dy da}

- 2.17s)

The resulting nondimensional form of Eq. (2.16) is:

[QZ, - Q% {A} + uQ2[FCP™(k, M) + CJ*"(k, M)]{A} = F. (2.18s)



Substitution of Eq. (2.17s) into Eq. (2.16) and comparing to (2.18s) gives:

27r

—00

JOmn 4 o = 1 / { (1 + ﬁ_lign)z(Gf;{l"(ag) +jG11nn(a())) }(lm,.

Vo3 (1 = ME) — 2kMoaq — k?
Solving for C; and C; independently, then:

C*™ (k, Mo) / (1 + M22)*Gn (g )darg
0
2” (1 - Mz) — 2kM0a0 + k2

/ 1+ -—9—9' G}n (ao)da()
a3 (1 = M3) + 2kMoe k2

—(1 + M320)>Gmn (g)d
CI™ (k, My) __/ + ) (ao)dag
V=3 (1 = MZ) — 2kMyaq + k2

/ (1 + Mza0) G""‘(ao)da(,
\/aﬂ 1 - + 2kMyay — k‘z

1 1
/W’ne°1“°z°dxo /Wme"’“z“d:c(,
0 0

where:

GE™ + jGP" =

Y

(2.19s)

(2.20s)

(2.21s)

A; is the region where af(1 — MZ) — 2kMoap — k* < 0, and A; is where

ad(l — M) — 2kMyag — k* > 0. For symmetric fluid loading on both sides, see

Figure 2.1(c), the integrals in Egs. (2.20s) and (2.21s) would be doubled.

10



2.2 Mode Function Representation

2.2.1 Finite Plate

The normalized mode shapes (zo = z/a and yo = y/b) for clamped isotropic

plates are represented as follows:

R S
YD Bliwe(zo)ws(vo),

r=]1 s=

Wi

[y

Q
Z By p(z0)tq(v0) (2.22)

1 ¢g=1

||
1M~

where the nommalized clamped beam functions, i, may be approximated by (see

Appendix A):
Ve(2) = sinfrz — cosfrz — (—1)TePF71) 4 gz (2.23)

and By} and By, are eigenvectors of the beam modes, s and pg, associated with the
m** and n** plate modes, respectively. The approximation, Eq. (2.23), eliminates
the calculation of hyperbolic functions which can lead to inaccuracies, particularly

for higher modes.

2.2.2 Semi-infinite Strip

The normalized mode shapes for the semi-infinite strip are given by:
W = d)m(xﬂ)a Wy = '/’n(:t()), (2.22s)
The clamped mode shapes are given by Eq. (2.23), while the pinned mode shapes

are Y,(z) = sin(rrz).

11



2.3 Frequency Response Solution Techniques
2.3.1 Half Power Method

The ‘half-power bandwidth’ method is the approach frequently chosen in
estimating small critical damping ratios. The amplitude over force ratio is plotted
versus frequency, where the mechanical force is non zero. 2, and 2, are the
frequencies at which this ratio is 712- of the maximum value found at the resonance
frequency, (2. The relationship between these frequencies and the critical damping
ratio is [21]

_OF -0,
—ar T o20n

¢ (2.24)

assuming that 21" < 2F. 27 and 27" are the real and imaginary parts, respectively,

of the resonant frequency.
2.3.2 Complex Frequency

The above method is an approximation to solving directly for the complex
frequency. In general the modal frequencies are calculated by setting the determinant
of Eq. (2.18) or (2.18s) to zero for F = 0. The determinant in this case is complex
so that the real and imaginary parts must both be zero. Let, Q™=Q"g+jQ™; be one
of the complex modal frequencies at which the determinant is zero. Then the critical

damping ratio is defined as:

¢ (2.25)

]
iOI 2
=3 [~3

Although this is the most direct method, it is also computationally time-consuming.
For each test panel the complex determinant, composed of complex C; and C;

integrals, must be evaluated many times.
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2.4 Perturbation Approximation for Small Mass Ratio

Initially, the damping values may be calculated relatively conveniently using a
perturbation technique. Not only will these results give preliminary damping values,

but they also provide starting values for solution by frequency response methods.

The frequency will be perturbed about 1 = 0 and only include up to first
order terms. For air loading p is usually small. The m* modal frequency may

be expressed as:
B +IO7 = QF + 407 (2.26)

Substitute Eq. (2.26) into Eq. (2.18) or (2.18s) and set the determinant of the equation

to zero, for F' = 0. This is done for each order of u. The zero order terms are:
o = O, (2.27)

or the zeroth order terms are simply the nondimensional undamped in-vacuuo modal

frequencies, {1,,. Solving for the first order terms then gives:

e — Qm .
T = O™ (kmy M, 1) + CP™ (b, M. D) 2.28)

Substituting Egs. (2.27) and (2.28) into (2.26) and maintaining the first order

approximation yields the critical damping ratio:

m mm
_0 ke, M) (2.29)

C’ng 2

This result is valid for the semi-infinite strip and the finite plate. In addition, the

multimode analysis for the first order perturbation is only dependent on a single

in-vacuuo mode.
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2.5 Solutions for Special Cases

First, three limiting cases of the flow analysis are considered. They provide

physical insight and check the more complicated numerical calculations.
2.5.1 Incompressible Flow

For the incompressible flow case, where ¢y — oo, then Eq. (2.3a) reduces to:
Vip =0, (2.30)

the well-known Laplace’s equation. The expressions relating the velocity potential to
the perturbation pressure and plate displacement, Eqs. (2.2a) and (2.4a), respectively,
remain unchanged. Using Fourier Transforms the pressure on the plate has the same
general form as Eq. (2.17). However, n = \/m is real since the square root

argument is non-negative. In addition, Eq. (2.17) will contain only real terms. Thus

k = 0 (since c¢ — o0) and C; = 0.
2.5.2 No Flow

For small reduced frequencies (¢ < 1) and M = 0, it can be shown that for

an isotropic, clamped, finite plate:

k P2P2 k4 P2P2 k2 P2P2 k2
mm — D= — 2 2 3174 2173 114 9.
Cr(e M =0,0) =5 impe + =g+ =3 —+ =5 — |, (2.31)
where .
—cosfy + 2 — sinfB, — (—1)7
pl = ﬁ ki
—cosfs +2 — sinfly — (—1)°
m= ,B ’
L)
_1 +(°1)r(_ﬂr+ 1)
P3 - ,82 b)
14+ (=1)*(=Bs +1)
P4 = ,82 .
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This assumes that the plate mode is a simple product of two beam modes, i.c..
Wm(z,y) = ¥ (z)¢s(y). Eq. (2.31) is dependent on k and goes to zero as k& — 0

as predicted for the incompressible flow case.

2.5.3 Piston Theory

The third limiting case, commonly referred to as piston theory, is applicable in
subsonic flows for k >> 1 and for higher supersonic flows at all reduced frequencies.
The pressure on the plate is [9]:

aw) (2.32)

P|z=0 = pocy (]u)W + UOEL'—

Or physically, the pressure is related to that in a tube where the piston velocity is
given in parenthesis and pycy is the acoustic impedance. Substitution of Eq. (2.32)
into Eq. (2.14) yields:

N ,

. aVI’n Y
Z An [Wn(phwﬁ - phw2 + ]wpoc[)) + p()C()U() a = 0. (233)

T

n=1
for no mechanical forcing function. Integrating Eq. (2.33) using Eq. (2.15) then the

frequency equation in nondimensional terms becomes:

2 2 .#Qz 2 Apngmn M _ P
Am[(Qm = %) + 5] + 40 ;7—_0. (2.34)
Comparison of Eqs. (2.34) and (2.18) gives:
1
- for m=n
cpr=( k (2.35)
0 for m#n
mn mﬂM B
opn = 2 (2.36)
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where:

1 1
ow,
G = / / R W drodyo.
Io
0

0
Eq. (2.35) shows no dependence on aspect ratio, /, or mode number pair, pg, except
through their indirect appearance in k. Egs. (2.35) and (2.36) are valid for any edge
condition as long as the mode shapes are orthogonal. Finally, this result also holds

for either the semi-infinite strip or the finite plate.

For an isotropic, clamped, finite plate:

48253
dmn = [ﬂé — ﬂ;‘

][1-(-1)P+']5(q-s) it rs (2.37)

Thus where the plate modes are modelled by pairs of beam functions, i.e, m=r.s and

n=p,q, then C3"" is only nonzero when ¢ = s, (p + r) is odd and r # ..
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(a) Finite plate

=X

(c) Semi-infinite strip, low on two-sides

Figure 2.1. Analytcal models
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CHAPTER 3 THEORETICAL RESULTS

The following figures contain results for various aluminum and composite plates.
Sample modal frequencies and damping values along with C; and (’» integral
evaluations are presented below. An IMSL [12] integration subroutine, based on
a Gauss-Konrod quadrature algorithm, evaluated the integrals in Eqs. (2.18) and
(2.18s). Table 3.1 contains the material properties used in the computations. Table
3.2 contains the beam function pairs that approximate the plate mode given in the first
column. For example, plate mode 3 resembles a plate with the first beam function in
the x-direction (flow) and the third beam function in the y-direction (span). Although
the plate mode resembles a specific pair of beam functions, the true plate mode
deflection is a summation of these beam function pairs, see Eq. (2.22). For the

semi-infinite strip, the mode shapes are the beam functions, see Eq. (2.22s).

3.1 Numerical Integral Evaluations

Specific numerical integral evaluations for C;™" and C,™" will only be presented
for the finite plate. The semi-infinite strip analysis showed similar trends. In addition,

the semi-infinite strip analysis agrees with the appropriate limiting case results.

The effective damping term (C{*™) vs. k values for the first six in-vacuuo plate
modes (m) of a square plate are presented in Figure 3.1. The in-vacuuo modes do not
allow for beam modal interaction. Thus for m=3, only the beam function pair 1,3 is
included in the analysis. These integral values represent an isotropic plate subjected
to flow at M = 0.8. The plate material propgrties and speed of sound appear in

k. Only diagonal terms for C;”" and C,™" (i.e. m=n) are presented since they are
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dominant. Note that for a particular plate, mode 10 (k = 3.0) could have a higher '

value and thus greater perturbation damping than mode 1 (k = 0.9), recall Eq. (2.25).

These numerical integration results are also compared with the limiting cases.
First, as £k — 0, then C;™—0 as expected from the incompressible flow analysis,
section 2.5.1. For the no flow special case, discussed in section 2.5.2. let & = 0.4
and | = 1.0. Then, C}}(M = 0) = 0.03155 using Eq. (2.31) of that section while
the numerical integration of the general case gives C11(M = 0) = 0.03067 using Eq.
(2.20). Thus the two results agree to within 3%. In addition, as k becomes large the
curves converge to those results predicted by piston theory, CT"™ = i— Eq. (2.35).

For the effective mass or stiffness terms, selected off-diagonal sz;’”‘ vs. k
values are plotted in Figure 3.2 for comparison with piston theory. These values
represent an isotropic square plate subject to M = 0.8 flow. As &k becomes large
k2Cy™ values approach the asymptotes predicted by piston theory, Eq. (2.36). Piston
theory predicts k2C36 = —2.67, while the numerical integration gives -2.76, Eq.
(2.21). The magnitude of these asymptotes is dependent on M, unlike (.

Figure 3.3 shows C}! vs. k for a square plate at various Mach numbers. C]*™
at a specific frequency generally increases with increasing Mach number, as would
be expected. In addition, the k value at which the maximum occurs decreases with
increasing Mach number. The curves converge as k becomes large as predicted
by piston theory.

Figure 3.4 shows C1! vs. k at M = 0.8 at various a/b ratios. As this ratio
decreases then the maximum possible C; value increases. Unlike the trend with

Mach number, as this ratio decreases, the k value at which the maximum occurs is
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approximately constant. Note that as k becomes large the curves converge as would
again be expected from piston theory. In addition, as ¥ — 0 then C"™ — 0 as

predicted by the incompressible flow case, section 2.5.1.

3.2 Damping Calculations

The panel damping values were calculated at various modal frequencies using
the half-power technique as described in section 2.3.1. For comparison purposes,
the structural critical damping ratio may be assumed to be approximately 0.01 for
all modes and all Mach numbers for lightweight structures such as aircraft fuselage
sidewalls. Unless otherwise noted the displacement frequency response curves were
calculated for a plate driven by a uniform pressure field over the entire plate or strip,
see Egs. (2.18) and (2.18s). The center of the plate was the response location. In
addition, the single (one) mode calculations are based on a simple single product of
beam functions. The modal frequencies were determined by locating the maximum
of the frequency response curve.

Sample response curves are shown in Figure 3.5. The frequency response was
calculated by two methods. For the ‘total’ method, C; and C, were calculated at
each ) value; while C; and C; were calculated only near the half-power points and
allowed to vary linearly between these two fmquencies for the ‘2-point’ method.
This 2-point approximation greatly reduces the necessary computation. For this
example, an aluminum panel was clamped on four edges and subjected to flow at
M=0.8. Figure 3.5a corresponds to a single mode analysis of mode 1; while Figure
3.5b corresponds to mode 10. For mode 1 the two methods give nearly identical

results, where the damping ratio is 0.010. However, for mode 10 the two methods
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give different response curves. The resulting ‘2-point’ damping ratio, 0.100, is nearly
173 less than that for the ‘total’ calculation of 0.140. The reason for this discrepancy
is evident from Figures 3.5¢ and d, for C; and C,, respectively, taken from the
‘total’ computation. Neither C; nor C; is linearly related to © in the frequency
range of interest. The results in Figures 3.5b-d represent an extreme, but important
case: for large damping values the 2—point approximation may not be sufficiently
accurate. C; and C; were also found to vary rapidly with respect to Q for very

small Q (plates near divergence).

3.2.1 Semi-infinite Strip

Results for the semi-infinite strip are presented in Figures 3.6-3.11. In these
calculations the total method was used since damping values as large as (.20 were
calculated. The finite plate analysis shows similar trends, but requires much longer

computational times.

Figure 3.6 shows the comparison between Eq. (3.18s) and the data presented by
Mixson [19] for a pinned, aluminum strip. The agreement is excellent. In this case
the results are for 4=0.762m, h=0.003175m with symmetric no flow conditions. The
mass ratio is varied by changing the fluid mass, pp. The fluid loading has a greater
effect on the first mode frequency than on higher mode frequencies. In addition,
mode 1 has damping values nearly an order of magnitude greater than the remaining
modes. Although the frequency ratios and the mode 1 damping values are well
approximated by a single mode, the damping for the higher order modes required
more terms. For example, the first three odd modes were required to calculate mode

3. Without flow the even and odd modes do not couple.
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Figures 3.7-3.11 present frequency and damping ratios for a number of semi-
infinite aluminum strips as a function of Mach number. The fluid for these cases is air
at standard atmospheric conditions. Note that for some Mach number the frequency
may be reduced to zero by a loss of stiffness due to the aerodynamic flow. In such
a case, divergence or aeroelastic buckling occurs, see ref. [9). The baseline case
is the first mode where a=0.2m and h=0.001m with fluid flow on one side, i.e., the

cavity side effect is ignored.

From Figure 3.7, the plate edge conditions have very little effect on the acoustic
radiation damping up to divergence. However, the divergence Mach number for the
pinned strip is nearly half that of the clamped strip. In addition, fluid loading on both
sides decreases the divergence Mach number about 25 percent while approximately
doubling the damping ratio. The figure also shows the comparison between the
perturbation approximation (dotted lines) and the half-power technique (solid lines).
The perturbation approximation is reasonably accurate until the flow causes the modes
to strongly couple or the flow significantly decreases the plate stiffness.

Figure 3.8 shows the effect of chord on frequency ratio and damping ratio as
a function of Mach number. Increasing the chord significantly increases the fluid
loading effect on both frequency ratio and damping ratio. Doubling the chord (from
a=(0.2m to a=0.4m) decreases the divergence Mach number more than factor of two,
while the damping ratio is approximately doubled, up to the divergence Mach number.

The effect of plate mass on frequency ratio and damping ratio is shown in

Figure 3.9. Changing the plate mass has little effect on the frequency ratio, since
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the divergence is stiffness related. However, doubling the strip mass decreases the
damping ratio by nearly one-half.

Figure 3.10 shows the effect of plate thickness on frequency ratio and damping
ratio as a function of Mach number. The plate thickness has a considerable effect
on both the frequency ratio and the damping ratio. Halving the plate thickness
results in more than a factor of two decrease in divergence Mach number. However,
changing the plate thickness has an approximately inversely proportional relationship
on the damping.

Finally, from Figure 3.11, the fluid loading has a much greater effect on the first
mode than on the higher modes. In fact, the acoustic radiation damping values for
the higher modes are nearly an order of magnitude less than the first mode. The
second mode was excited by applying a point force at x=0.05m with the response

calculated at x=0.15m.
3.2.2 Finite Plate

The following figures contain results for various aluminum and laminated
composite plates. For these cases the plate is clamped in an infinite baffle with flow
on one side. First, calculations based on Eq. (2.18) are compared with existing
calculations and data. As for the semi-finite strip, the fluid is air at standard
atmospheric conditions.

Wilby [29] measured the total damping for a number of steel panels up to Mach
0.5. The acoustic radiation damping component was measured by subtracting the
total damping at Mach 0 from the total damping at Mach 0.5. The structural damping

component was assumed constant with Mach number. Figure 3.12 contains the results
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for a number of modes of these panels. The damping calculated using Eq. (2.18)
at Mach 0 was subtracted from that at Mach 0.5. Although, some of the points
show a factor of 3 difference between the present results and Wilby, most of the
points are within a factor of 2. The measured mean damping values were reported to
have a +25% variation. In addition, measurement/instrumentation errors could cause

overprediction of the experimental values [29].

Chyu [5] used an analysis similar to the perturbation approximation to predict the
acoustic radiation damping. A comparison between the perturbation approximation
results, Eq. (2.29), and Chyu’s are given in Figure 3.13 for a steel plate, (.0889 x
0.0889 x 0.000381m, subjected to a Mach 0.3 flow. The agreement between these

two analyses is good.

The effect of a/b ratio on acoustic radiation damping is given in Figure 3.14.
For these calculations a was kept constant at 0.2m and b was allowed to vary. The
thickness is h=0.001m. Thus as b becomes large, then a/b— 0 and the result is a
semi-infinite strip. The semi-infinité strip results have been added next to the left
axis of the figure. Increasing the Mach number raises the damping vs. /b ratio
curve, except at the higher ratio values. At large a/b, the convergence of the curves
is predicted by piston theory. The square near the right axis corresponds to a no
flow semi-infinite strip calculation where the chord is 0.025m. This result has been
compared to that for a finite plate where a=0.2m and 5=0.025m (or a/b=8). Finally,
note that the acoustic radiation damping at M=0.6 is greater than or equal to the

assumed structural value, except for the higher a/b ratios.
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The frequency ratio and acoustic radiation damping for a number of laminated
composite plates are presented in Figures 3.15-3.20. Results for an aluminum plate
with the same dimensions has been included for comparison purposes. The plate
dimensions are a=0.2m, b=0.3m and h=0.001m. Previous results showed that the first
mode had acoustic radiation damping values approximately an order of magnitude
greater than the higher modes. For this reason only the first mode results will be
presented. The first mode damping values for isotropic plates were also found to
be calculated accurately by a single product of beam functions. Since the laminated
composite plates are orthotropic or quasi-isotropic, then the mode shapes are nearly
the same as the isotropic case. Thus the results presented here are for a single product
of beam functions for the first mode. The results presented in Figures 3.15-3.18
are to emphasize the differences between laminated composite and isotropic plates
(such as aluminum).

In Figure 3.15, the graphite/epoxy plates have the same outside fiber direction,
which is aligned with the flow, 0°. The [0,445,90]; and aluminum plates have nearly
the same modal frequency. However, the difference in damping results from the
different mass ratios, p. This is apparent in the perturbation approximation, Eq.
(2.29), where the damping in proportional to the mass ratio. Note that all of the
damping ratios are significantly larger for the graphite/epoxy plates than the aluminum
plate. In addition, all of the graphite/epoxy plates have acoustic radiation damping
ratios of approximately the same magnitude.

In Figure 3.16, the frequency and damping ratios are for the baseline aluminum

and graphite/epoxy plates where the outside fiber direction is perpendicular to the
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flow, 90°. At the lower Mach number, well below divergence, the damping ratios for
the graphite/epoxy plates are greater than that for the aluminum. These graphite/epoxy
plates diverge at a much lower Mach number than the aluminum plate. This is due

to the decreased stiffness of the graphite/epoxy plates in the flow direction.

In Figures 3.17 and 3.18, the composite plates are carbon/carbon. The damping
and frequency ratio trends for the carbon/carbon plates are similar to those for the
graphite/epoxy plates. The laminates where the outside fiber direction is aligned with
the flow, Figure 3.17, show less effect on frequency ratio than the aluminum plate. In
addition, the damping for the carbon/carbon plates is much greater than an aluminum

plate with the damping for the two carbon/carbon plates approximately equal.

Figure 3.18, where the outside fiber direction is perpendicular to the flow, shows
a greater effect on frequency ratio than for the aluminum plate. In addition, the

carbon/carbon plate still has a larger damping ratio as compared to the aluminum

Comparisons of Figures 3.15 through 3.18 show the same trends are evident
for the graphite/epoxy and carbon/carbon plates. In particular, the outside fiber
direction strongly influences the laminated composite acoustic radiation damping and
modal frequencies. The material property, graphite/epoxy or carbon/carbon, are less
important when the outside fiber direction is aligned with the flow. This results
from the fiber Young’s modulus (E;;) for the two lamina types having approximately
equal magnitude. The material properties, in particular the matrix property is more
important when the outside fiber direction is perpendicular to the flow. Note that the
matrix Young’s modulus (E,») for the two lamina types differ by almost a factor of 2.

In addition, the composite plates where the outside fiber direction is perpendicular to
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the flow diverge at a lower Mach number. The gross difference in acoustic radiation
damping and modal frequencies depending on the outside fiber direction implies that
laminated composite plates can be tailored to obtain high acoustic radiation damping

values and to delay or prevent divergence.

In general, the acoustic radiation damping for laminated composite plates is
significantly greater than for the aluminum plates. These comparisons were based on
similar thickness plates. Comparisons based on equivalent stiffnesses would require
thicker aluminum plates resulting in lower acoustic radiation damping values. Thus
the net difference between the aluminum and composite plates would be even larger.

The data in Figures 3.15-3.18 have been compressed to demonstrate the ability
to develop compact design curves to predict acoustic radiation (or aerodynamic)

damping. The damping ratio normalized by the mass ratio is plotted against a reduced

frequency factor, k) = \/ 1-52(;':;"':;—(2::‘,‘34ﬂ \/ p—,ﬁl;?ar, in Figure 3.19. The reduced
frequency was selected for the abscissa based on the perturbation approximation
relationship. It was shown that CJ*™(k, M, l) varies linearly with k for many plates
of interest. Note that C3*™(k, M,!) must be evaluated at the resonant (not the
in-vacuuo) reduced frequency for the mode of interest (in this case, the first mode).
For constant a/b ratio and constant Mach number, the data form a straight line. A
least mean square (LMS) algorithm was used to fit a straight line through the data.
These results include typical aircraft sidewall panels and plates near divergence. Most
of the data are for plates of the same size (a=0.2m, b=0.3m., h=0.001m). Additional
data for aluminum plates with a/b=0.6667 and M=0.6, but varying plate thickness

and area have been inciuded for comparison.
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To eliminate the need to evaluate the C"™(k, M, 1) integral, the reduced trequency
factor was approximated as k; = pTDaJitg’ see Figure 3.20. For typical aircraft panels
subjected to flows less than or equal Mach 0.6, this approximation was reasonably
accurate. However, at M=0.8, where the flow can significantly change the plate
stiffness of the plates near divergence, the approximation is no longer valid. An LMS
algorithm was fit through the points for plates not near divergence.

The results presented in Figures 3.19 and 3.20 indicate that design curves can be
constructed to predict the acoustic radiation (or aerodynamic) damping of lightweight
structures. For aerospace applications, where aircraft sidewall panels are not designed
to operate near divergence, the design curves need not include flow effects on the

plate resonant frequency. Thus the computations are greatly simplified due to the

elimination of the two-dimensional integral evaluation of C,.

28



Table 3.1. Material Properties

Enx10° | Epx10® | viz | Gx10° | Piamina Pp
Material (N/m?) (N/m?) (Nm?) | (m) | (kg/m?)
Aluminum 72. 72. 0.33 274 — 2700.
Steel 200. 200. 028 | 83. — 7700.
Graphite/Epoxy 163. 10.2 03 | 648 |.000125] 1600.
Carbon/Carbon 138. 6.89 0.08 | 1.03 | .00025 | 1860.
PZT 82. 82. — — | .000254 | 7600.
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Table 3.2. Plate Mode(m) to Beam Function Pair (r,s) Correspondence

m r $
1 1 1
2 1 2
3 1 3
4 1 4
5 1 5
6 2 1
7 2 2
8 2 3
9 2 4
10 3 1
11 3 2
12 3 3
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Figure 3.1. Effect of reduced frequency and mode number on C;.
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Figure 3.2. Effect of reduced frequency and mode number on ¥°Cs.
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Figure 3.3. Effect of Mach number on first mode C,.
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Figure 3.15. Effect of Mach number on (a) frequency ratio and (b) damping
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Figure 3.16. Effect of Mach number on (a) frequency ratio and (b) damping ratio
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Figure 3.17. Effect of Mach number on (a) frequency ratio and (b) damping
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CHAPTER 4 EXPERIMENT

Due to the small data set of existing experimental damping values, an exploratory
experiment was designed to acquire data for comparison with the analysis. Before
designing the test apparatus, a number of facilities at NASA Langley were evaluated
for not only the flow capabilities but also scheduling requirements. It was appreciated
that such experiments are difficult to perform and that existing data for subsonic

flow show substantial scatter [29].

4.1 Description of Test Setup

The test model was designed for installation in the Quiet Flow Facility at NASA
Langley Research Center. A photograph with the model installed in the facility and
accompanying facility schematic are seen in Figure 4.1. The facility is a 6.1 x 7.3 x
9.2m anechoic chamber with the nozzle centerline located at 3.65m above the floor.
Wedges lining the chamber provide an essentially echo-free environment (absorption
coefficient of 0.995) down to about 70 Hz.

The facility was operated as an open-loop, blow-down system with three
pressurized spheres providing the air source. The airflow exhausts to the atmosphere
through the openings in the facility wall and ceiling. This system was capable of
maintaining a uniform flow at M=0.6 for approximately S minutes. At lower Mach
numbers, e.g. M=0.3, the run-time can be considerably extended. A maximum
performance up to Mach 2.1 with a 0.038m nozzle is projected. The nozzle used
for these tests was 0.3048m in diameter with a maximum capability of Mach 0.9.

The variation of total pressure at various cross-sections parallel to the nozzle face
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was previously measured using a traversing microphone system. The horizontal
variation at 0.508m and 0.762m have been plotted in Figure 4.2. In addition, the
vertical variation at 0.508m for M=0.6 has also been included. The results show a
very uniform pressure in the jet core. The test plate studied here was approximately
0.584m from the nozzle exit. Even at (0.762m the test plate was well within the jet
core, see Figure 4.2. During all test runs the chamber conditions, i.e., temperature,
humidity and pressure, were monitored.

A photo of the model in-situ is shown in Figure 4.3. The model dimensions are
given in Figure 4.4. To approximate two—dimensional airflow over both sides of the
plate, two horizontal baffles were placed near the plate edges. The airfoils above and
below the baffles were incorporated to make the flow as symmetric as possible. The
plate is placed between nominally identical symmetric fore and aft airfoils, such that
the leading edge of the elastic test plate is attached to the trailing edge of the leading
airfoil, while the trailing edge of the elastic test plate is attached to the leading edge
of the aft airfoil, see Figure 4.5. Pressure taps were symmetrically located in the
airfoils to make sure that the plate is aligned with the flow and thus the plate is not
exposed to lifting forces (i.e. a static pressure differential). The affect of flow on
both sides of the plates doubles the C; and C; integrals. This results in approximately
doubling the acoustic radiation damping.

Details of the clamping mechanism for the elastic test plate are shown in Figure
4.6. The plate leading edge is secured between the upper and lower airfoil halves
with the screws going through the plate. This edge was assumed to have classical

pinned conditions. The plate trailing edge is inserted into a slot formed by the leading
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edge of the upper and lower halves of the trailing airfoil. This slot was designed
to allow the plate to expand or contract freely, without allowing rotation. Thus the
plate trailing edge was assumed to have classical clamped conditions. The plate was

expected to expand and contract due to temperature changes caused by the airflow.

The plate was instrumented with strain gages and PZT (lead-zirconate-titanate)
patches (piezo-electric devices), as seen in Figures 4.7 and 4.8. Two pairs of strain
gages were symmetrically bonded near the trailing edge of the plate to measure the
y-direction bending strain. Three pairs of PZT patches (0.0254 x 0.0127 x 0.00025m)
were also symmetrically bonded. The PZT patches can be used to either excite the
structure or measure the structural response. In this case the PZTs were intended to
excite the bending motion of the plate by driving the three patches on one side of
the plate out-of-phase from the patches on the second side. The instrumentation was
located near the plate trailing edge to minimize the effect on the flow over the plate
as well as near a theoretical clamped edge where bending moments are high. The

accelerometer was later attached at the plate center.

4.2 A priori estimation of test conditions

Various parameters were estimated a priori to assess the conditions for the
experiment. Among these were the boundary layer thickness, PZT output and
the anticipated strain levels. A summary of these calculations for an aluminum

semi-infinite strip with clamped-pinned edge conditions follows.
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4.2.1 Boundary Layer Thickness

The boundary layer thickness is given by the following empirical formula [2]:

6 037 41
T - (Rez)lls ( . )
where the Reynolds number is:
U
Re, = ”"ﬂ z 4.2)

X (=0.508m) is the distance from the leading edge of the fore airfoil to the center of
the flexible plate, and  (=1.8x10> Ns/m?) is the dynamic viscosity. The fluid density
and flow speed are calculated using the compressibility tables for air and assuming
an ideal gas. At M=0.6, when the static pressure is 14.7 psi and the stagnation
temperature is 50°F, then the fluid density, pg, is 1.34kg/m? and the flow speed, U, is
195m/s. These parameters result in Re,=7.37x10°, giving a boundary layer thickness,
6, of 0.00794m. The boundary layer thickness to plate chord ratio, é/4, is (0.0794.
Since this ratio is less than 0.1 then the boundary layer affects on acoustic radiation
damping may be neglected. If this ratio had been much greater than (.1, then the

boundary layer would need to be included in the analysis.
4.2.2 PZT excitation

The PZT excitation may be approximated using the following analysis for a
semi-infinite strip, see ref. [6]. The boundary conditions assumed in ref. [6] have
been modified to accommodate pinned-clamped conditions. Assuming harmonic

motion, the isotropic semi-infinite equation of motion is:

4w ) d*M,
D—d$—4—phw W = W, (4%)
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where the moment induced by a PZT pair excited for bending motion is given by:

M; = crepelu(z — ag) — u(z — a1)|W,e /W, (4.4)
The PZT parameters are: ¢; = —%(-1—2_!},)"72, epe = LY and

P=zfe [ght(h + t)/{2 [(h/zs)3 + t3] + %htz}]. E,. and Ej are the PZT and plate
bending stiffnesses, respectively, A is the plate thickness, ¢ is the PZT thickness, d3;

is the PZT charge constant, and V is the input voltage.

Eq. (4.3) is solved for the plate displacement by assuming a single mode
expansion of W as given by Eq. (2.12) and applying Galerkins' method as given
by Eq. (2.15). Substituting the beam function for a clamped-pinned plate (i.c.,
Wa(z) = cosh(Bnz) — cos(fnz) — ap[sinh(Bpz) — sin(B,z)]) into the modal

expansion and solving for the plate modal amplitude, then:

W, Fy-F

pe 4.
Wy pha(e? — (14 520,)" “4.6)

|An| = crepe
P

where Fy = fy[sinh(Bnag) + sin(Bnao) — an(cosh(Bray) — cos(Bnay))] and

Fy = By[sinh(Bpa1) + sin(Bpa1) — an(cosh(Bpa;) — cos(Byay))]. Utilizing the
material properties given in Table 2.1 and the plate and piezo dimensions given in
Figure 4.8, then the magnitude at the first mode is A;=1.75x10"* using three PZT
pairs. This estimation is based on a maximum PZT input voltage of 80 volts with
a charge constant of d3; =150x10" !2 m/V. The equivalent viscous damping, ¢, is
assumed to be 0.01. Since, the plate displacement to thickness ratio, A;/h=(0.175, is

less than 1, then the plate is vibrating in the linear range.
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4.2.3 Flow induced vibrations

Although the estimated mean flow boundary layer characteristics should not
significantly affect the acoustic radiation damping, the boundary layer pressure
fluctuations can cause plate vibrations. These vibrations levels were estimated here
to make sure that the PZT patches could drive the plate to response levels at least
an order of magnitude greater than the forced response due to the boundary layer.
The boundary layer pressure fluctuations on the plate were assumed to be fully
correlated in space which results in an overestimation of response. The pressure
spectral density is [17]:

2 _ p?‘ms
wp [1 + (w/w())Z]

where

_ 0.006¢
Prms = 101402’

and

1
g = 5pU".

Using the flow conditions calculated in section 4.2.1, then the modal magnitude

for a single mode approximation is given by:

Q(w)w,,(,.w{z;l— [(—1)"+‘\/a3, Fl-+aZ 1+ Qa,,J}
Ap = . 5 : (4.8)
phaw?2(,
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Evaluating Eq. (4.8) for the first mode at its resonance frequency, then
Allw=w, = 2.44 X 10~%m for ¢7=0.01. This response is much less than that estimated
due to the PZT excitation (A;=1.75x 10—*m) calculated in section 4.2.2. Thus the

PZTs should drive the plate above the boundary layer ‘noise’.

4.3 Ground vibration tests

Extensive no-flow ground vibration tests were done prior to testing the elastic
plate with flow. These test results are summarized in the following sections. Two

plates were tested during the ground vibration test phase.

4.3.1 Test Plate 1

The first test plate provided much information concerning repeatability and modal
frequencies, mode shapes and structural damping values. Tests were conducted with

impact excitation, acoustic excitation as well as with PZT excitation.

A sample transfer function between the impact hammer (PCB No. 086C80)
and an accelerometer (Endevco #2250-A10, 0.4gm) is given in Figure 4.9. The
modal peaks are sharp and distinct. The scatter of modal frequency and damping
values acquired over a 2 month period during which time the plate was removed and
reinstalled in the model many times are plotted in Figure 4.10 along with analytical
clamped-free-pinned-free (CFPF) and pinned-free-pinned-free (CFCF) values [4].
The data were acquired using both impact hammer and sine-dwell acoustic speaker
excitation. The response was measured with 1 or 2 accelerometers attached to the
plate at various locations. The damping was calculated from a bode plot within

the spectrum analyzer (GenRad 2515) or from the transfer function by using the
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half-power technique. The results show very little change in modal frequency, but a
larger scatter in the damping values for each mode. Note that the damping is equal
to or less than 0.021 for all modes. Also modes 2,1 and higher are closely spaced in
frequency or the mode shapes more difficult to identify. For these reasons only the
first three modes were considered in future tests. Since the 2nd and 3rd modes are
not included in the semi-infinite strip analysis, then only the first mode experimental

flow results will be compared to analysis.

Unfortunately, this plate was damaged such that the fundamental frequency peak
was no longer sharp and distinct. Thus a new test plate was constructed and used

in the remaining tests.

4.3.2 Test Plate 2

Test Plate 2 was placed in the model and the modal frequencies and damping
values calculated from an impact hammer test with the response measured by an
accelerometer. The results are also plotted in Figure 4.10. Plate 1 and 2 modal
frequencies agree very well. The damping value for the Plate 2 first mode lies well
within the scatter of the Plate 1 data, while the 2nd and 3rd mode damping values
are less than those measured for Plate 1.

Bare (described in the preceding paragraph), instrumented and in-situ case modal
frequencies and damping results are presented in Tables 4.1 and 4.2, respectively.
The instrumented and in-situ results have the PZT patches and strain gages bonded
to the plate. The instrumented results were acquired with the plate installed in the
model, but the model was not in the flow test chamber. The in-situ results were

acquired with the model installed in the flow test chamber. The plate was removed
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from the model between the bare and instrumented cases to allow for the installation
of the PZT patches and strain gages. However, the plate remained in the model
between the instrumented and in-situ cases.

The analytical natural frequencies for plates with ideal CFPF and PFPF boundaries
have been included with the bare, instrumented and in-situ measured values in Table
4.1. Note that based on frequencies alone, the bare case is closer to CFPF while the
instrumented plate is closer to PFPF. The instrumented plate frequencies are lower in
part due to the added PZT masses. The PZTs were estimated to decrease the modal
frequency of the first mode about 10%, while the accelerometer mass would reduce
the fundamental modal frequency less than 2%. This mass partially accounts for the
decreases in frequency between the bare and instrumented cases. In addition, the
non-uniform distribution of the mass will also affect the modal response. These mass
changes would most affect the lower modes, particularly the first mode.

Most of the damping results presented in Table 4.2 (see also Figure 4.11)
were acquired using an impact hammer or sine-dwell acoustic speaker test with
accelerometers or strain gages measuring the response. For these cases, the damping
was calculated from the bode plot or by the half-power technique (3 in Figure 4.11).
A log-decrement technique [18] using the PZT patches or a speaker as excitation
was used for the damping calculations in column 4 or ¢ in Figure 4.11 (with the
raw unscaled data in Appendix B). These were the only decay measurements to have
a distinct decay. These values in column 4 are significantly larger than those in
columns 2, 3 and 5. A beating pattern was evident in the decay data. The last three

values in column 4 were acquired simultaneously and agree to within 12% for the
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two strain gages and the accelerometer. The decay calculation with a speaker input

and accelerometer output was not as clean.

The PZT excited decay responses may be significantly influenced by the PZT
patches. PZT patches act like capacitive devices that may thus continue to affect the
plate vibrations (e.g. additional damping) after the signal to them has been stopped.
The PZT effect on the decay has not been quantified. Although the PZT patches
might affect absolute damping values, the change in damping may still be correct,
depending on the magnitude of this effect. Sine-dwell PZT with strain gage response
results were not calculated due to the interaction between the PZTs and the strain
gages. The strain gages can be affected by the 100 volts supplied to each PZT patch.
This was evident in the sine-dwell PZT test where the strain gages showed essentially
a flat response near the modal frequencies. In addition, the strain gage should be
several characteristic lengths from the PZT patches to eliminate the effect of the PZT
nearfield on the strain gage response. The in-situ damping values acquired with the
impact hammer agree with the previous impact tests. However the data acquired
using the sine-dwell PZT technique with accelerometer response are significantly
higher as was evident with the decay measurements. The in-situ modal data was
acquired following the flow tests to be described in the next section. In general, the
results from the PZT excitation are not thought to be reliable. In future tests, the PZT

patches and strain gages should be well separated on the test plate.
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4.4 Flow Tests

Following the ground vibration tests outside the flow test chamber, the response
of the plate with flow was measured. The static pressure differential across the
fore and aft airfoils was monitored during the tests with Datametrics (no. 570D)
pressure transducers. The variation with Mach number is plotted in Figure 4.12
with the accelerometer installed. The pressure differentials were also measured at
M=0.6 without the accelerometer installed. These results are denoted as a ‘square’
for the fore airfoil and a ‘plus’ for the aft airfoil. The solid line is the minimum
pressure differential that would cause buckling, and thus changing the plate stiffness
[27]. The fore and aft airfoil pressure differentials lie well below this line. The
pressure differential increases with Mach number up to M=0.7 as expected. The
decrease at M=0.8 has not been explained. The accelerometer lead was blown off
during the M=0.7 run and was gone during the entire M=0.8 run, which may partially
explain this trend. The accelerometer itself remained attached to the plate. Since
Ap is not exactly equal to 0, then the airfoils are not perfectly aligned with the
flow. The difference in Ap between the fore and aft airfoils could be caused by
a misalignment between the two airfoils. In addition, the instrumentation on the
plate, particularly the accelerometer, could cause a static pressure difference. An
accelerometer was bonded to one side of the plate once the strain gage outputs were
questioned. The accelerometer will significantly affect the flow, as is evident in
the strain gage response with and without the accelerometer at M=0.6, sce Figure
4.13. However, these accelerometer measurements did provide significant insight

and confidence in the results.
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The pressure, temperature, and humidity in the chamber were monitored during
the test runs. The chamber pressure remained relatively constant (0.1 psi) over the
three weeks in which flow data was acquired. The chamber temperature decreased
as much as 10°F during the course of a single blow down. If the plate were firmly
fixed (no expansion or contraction allowed) then this change in temperature could
cause the plate to buckle and become stiffer. The additional stiffness would cause
the modal frequencies to increase. However, the fundamental frequency was nearly
constant during a single blow-down which implies that the plate properties were not
changing. The repeatability of the accelerometer data at M=0.6 is shown in Figure
4.14. Between these two data acquisitions the accelerometer had been removed and
reinstalled. The relative humidity decreased from 30% ~ 40% to nearly 5%. The
effect of relative humidity is thought to be negligible.

The PZT patches were not sufficient to excite the plate greater than that induced
by the flow. This was evident in the sine-dwell PZT tests with the response measured
by an accelerometer. The peak at the PZT driving frequency was not discernible
above the flow ‘noise’. This might have been overcome if a much longer data
acquisition time was available so that the random excitation components due to the
flow could be eliminated by appropriate signal processing.

For the data cases presented with flow, the flow alone excited the plate. In
addition, the accelerometer remained attached to the plate center. The flow excitation
pressure field could not be measured with the existing test model. Thus, the fluid
to structure transfer function was assumed to have the same shape as a function

of frequency as the square root of the response power spectral density (PSD). This
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assumes that the flow excitation is nearly uniform as a function of frequency near
the modal frequencies. The modal frequency was the peak of the PSD while the
half-power points required for the half-power technique were located at one-half the

maximum PSD amplitude.

Sample PSD responses near the first modal frequency for the strain gage and
accelerometer are shown in Figure 4.15. The response at M=0.4 is small when
compared to the higher Mach numbers. However, a peak exists at the first mode.
Note that although the frequency increases with increasing Mach number, the response
amplitude decreases and broadens for M=0.5 — 0.7. This amplitude trend is expected
since as the Mach number increases, then the damping increases resulting in a
broadening of the peaks. If the excitation is assumed to increase with increasing
Mach number, then the decrease in peak modal response also indicates an increased
damping.

The modal frequency and damping results are shown in Figures 4.16-4.18 for
modes 1,1 and 1,2. Data for both the accelerometer and a strain gage have been
included. As for the analytical results, the frequencies are presented as ratios, with the
frequency at M=0 (240 Hz) as reference. The analytical results for clamped-pinned
and pinned-pinned semi-infinite strips and for a fully clamped plate where a=().1m,
b=0.15m, and h=0.001m have been included. The clamped plate damping values were
taken from the design chart Figure 3.20, since the flow would have a small effect
on the clamped plate fundamental frequency (see Figure 3.8a). As previously stated,
only the first mode is compared to analysis. The clamped-pinned and pinned-pinned

curves provide a lower frequency bound and upper damping bound while the tully
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clamped provides a lower damping bound. As expected from earlier analytical results,
the clamped-pinned and pinned-pinned cases have nearly the same damping ratio
but the pinned-pinned frequency ratio is significantly lower than the clamped-pinned
results. The measured first mode frequency ratios do not continue to decrease as
Mach number increases as expected from theory. In fact, there is little change with
Mach number or a slight increase. However, the results at M=0.4 show fair agreement

between the experimental and numerical values.

Looking at the damping ratio and the change in damping ratio relative to the
damping at M=0, in Figures 4.16b and 4.17, respectively, the analytical values are
for acoustic radiation damping only, while the measured values include all damping
components. However, the change in damping ratio as a function of Mach number,
see Figure 4.17, should only result in the acoustic radiation damping for both the
experimental and analytical cases. Note that the analytical acoustic radiation damping
value at M=0 (0.015) lies below the measured value (0.018). The damping values
for M=0.5 and higher lie below the analytical clamped plate values. Two damping
values for the accelerometer at M=0.6 corresponding to the two runs in Figure 4.14
are included. This indicates the repeatability of the damping values i1s good. In
addition, the damping for the strain gage at M=0.6 when the accelerometer was not
on the plate is indicated by the ‘x’. The reason for the disagreement between analysis
and experiment has not been determined.

The second mode modal frequency and damping values are included in Figure
4.18. Since the second mode is not theoretically modeled, no comparison with theory

is available. The occurrence of the second mode is not possible analytically for a



uniform flow due to symmetry . In addition, the effect of the horizontal baffles on the
plate response was not modelled. Since, this mode is apparent in the experimental
data, then either the plate is non-uniformly clamped in the fixture or else the flow
is not uniform across the plate span.

The experimental results show good repeatability for modal frequencies with fair
repeatability for modal damping ratios. Part of the scatter in damping values may
be due to measurement techniques. In addition, the measured damping values have
traditionally been less precise or repeatable than the frequencies. However, the test
results with flow show good repeatability.

The theory and experiment are definitely not in close agreement, especially
for damping. The following paragraph presents some possible reasons for these
differences.

The flow core radius at the plate is about the same as the plate chord. Thus a
mean flow discontinuity exists near the plate although the plate itself is well within
the flow core. The flow discontinuity can cause reflection of acoustic waves back
to the plate. The plate is assumed in the analysis to create flow disturbances that
radiate to infinity through a uniform mean flow field. This discontinuity in the flow
could be significant and it might be accounted for in the analysis by using a fluid
model that varies with distance from the plate. An alternative approach to improving
the analytical/experimental agreement is to perform the test in a low turbulence wind
tunnel. This would more accurately replicate the analytical model presented here.
In addition, better modelling or understanding of the effects of PZT material would

improve the experimental design.
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Table 4.1 Plate modal frequencies

Analytical frequencies (Hz)

Measured frequencies(Hz)

Mode CFPF PFPF Bare Instrumented In-situ
1,1 378(1.00) 204(1.00) 315(1.00) 246(1.00) 240(1.00)
1,2 440(1.17) 267(1.31) 372(1.18) 355(1.44) 295(1.23)
1,3 657(1.74) 522(2.56) 562(1.78) 538(2.18) 475(1.98)
14 1066(2.82) 849(4.16) — — —

2,1 1229(3.25) 818(4.03) 930(2.95) 923(3.87) —
22 1304(3.45) 898(4.40) 962(3.45) — —
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Table 4.2 No-flow measured damping values

Mode Bare! Instrumented? | Instrumented?® | Instrumented? | In-situ’
1,1 .0146(.016) | .0256 (.0398) | .0313-.0397 058 018 (.085)
1,2 .0056 0206 (.0272) — 0963 — (.0574)
L3 0047 .0158 (.0225) — .07982 0248 (—)

.0531b

.0532°

04734

Superscript  Force method Response type
1 impact hammer bode accelerometer

(speaker sine-dwell 1/2-power) (accelerometer)
2 impact hammer bode accelerometer
(impact hammer 1/2-power) accelerometer

3 speaker sine-dwell 1/2-power strain gage

4 PZT decay accelerometer

a speaker decay accelerometer

b PZT decay strain gage

c PZT decay strain gage

d PZT decay accelerometer

S impulse hammer 1/2-power accelerometer

(PZT sine dwell 1/2-power) accelerometer

67




Makeup
[ Alr Fan

Sphere
Air

Supply

Nozzle /

Figure 4.1. (a) Photograph and (b) schematic of Quiet Flow Facility.

Exit to

Atmosphere —~
Test Area J
Anechoic /f-/ ‘_//
Chamber
] ™~ Eductor
l System
> 0\ :://
- — ‘j\—Tuming
Vanes
~— Model
Location
(b)

68




Elastic plate
Mach number

150 +Httttbbt bbbty ¢ ©¢o03
+ + A A 045
1.40 e e
+ .
:E + ® ¥ 0.6 vertical
05_1.30 g M+ + o+ 075
~ o ’&E
$1.20F & v
Q w2 AAAAAAAAAAAAAAAAAAAA ¥
A +
1.10 A
1.00 .."' ....... N P Lo .- ST
-0.2 -0.1 0.0 0.1 0.2 0.3
Traverse location (m)
(a)
Elastic plate Moch number
1.50 P R AT R ¢ %03
* * A Aous
1.40 -
E + + 075
e 1.30
(O
~N
£ 1.20
(ol

1.10

1.00 L™ ... . .
-0.2 -0.1 0.0 0.1 0. 0.3
Traverse location (m)
(b)

Figure 4.2. Variation of total pressure ratio at (a) 0.508m and (b) 0.762m from nozzle.
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Figure 4.4. Sketch of model.
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Figure 4.10. Scatter of (a) modal frequencies and (b) damping ratios
for Test Plates 1 and 2 without PZTs or strain gages installed.
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Figure 4.13. Power spectral density of strain gage at
M=0.6 with and without the accelerometer installed.
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Figure 4.16. Variation of mode 1 (a) frequency ratio and (b) damping ratio as a
function of Mach number for various analytical and experimental cases.
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CHAPTER S CONCLUDING REMARKS

The primary objective of the dissertation was to evaluate systematically the
acoustic radiation damping for comparison with typical values of structure damping.
Analyses and numerical techniques to predict the acoustic radiation damping for
isotropic and laminated composite finite plates and semi-infinite strips have been
presented. The predictions are based on the classical linear differential equation for a
flat plate or semi-infinite strip. The perturbation pressure derived from the linearized
Bernoulli and continuity equations characterizes the fluid loading. Parameters
varied in the analyses include Mach number, structural mode number, plate or strip
dimensions, edge conditions, material properties and ply lay-up. In addition, the
results were compared to various limiting cases and previously published results.

The perturbation approximation for small fluid to plate mass ratio gives an
initial estimate of acoustic radiation damping with a minimum of computation. The
perturbation method was based on a multimode approach; however, the resulting
expression requires only a single mode computation. The approximation does not
account for changes in the effective mass or stiffness. Thus when the flow significantly
affects the modal frequency, the perturbation approximation results are not valid. In
addition, the perturbation approximation results in large errors near plate divergence
where there is a substantial loss of plate stiffness due to aeroelastic effects from the
interaction of the elastic plate with the aerodynamic flow.

An alternative method for computing the change in modal frequency and acoustic

damping due to the flow is to use the resonant response and half-power method.
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However care must be used here as well, for example, in computing the fluid loading
term. In fact, for large damping values the effective damping (C,) and effective mass
or stiffness (C;) terms must be calculated at each frequency in order to calculate

accurately the resonant peaks rather than using a simple linear relationship between

the two half-power points.

The semi-infinite strip results showed that the chord length and plate thickness
(and thus frequency) as well as Mach number significantly affect the acoustic radiation
damping. The plate mass affects the acoustic radiation damping ratio, but has little
effect on changing the modal frequency from the in-vacuuo value since changing the
plate mass does not change the plate stiffness. Changing the plate boundary condition
can significantly affect the modal frequency, but has little effect on acoustic radiation
damping up to the divergence Mach number of the least stiff plate. Generally, the
higher modes have acoustic radiation damping ratios an order of magnitude less
than the first mode. In addition, the fluid flow has much less effect on the modal
frequencies of the higher modes. The first mode for clamped-clamped plates was
found to be well approximated by a single product of beam functions.

Changing the aspect ratio can have a significant effect on the damping ratio. For
the first mode, the effect of increasing Mach number increases the acoustic radiation
damping up to where the curves collapse at high a/b to piston theory.

The acoustic radiation damping and modal frequencies for symmetrically
laminated composite plates were found to depend strongly on ply lay-up, particularly
the outside fiber direction. This dependence implies that the ply lay-up can be tailored

to maximize the acoustic radiation damping while delaying or preventing divergence.
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Additionally, the composite material acoustic radiation damping ratio is significantly
greater than an ‘equivalent’ aluminum plate. This is true whether the equivalence

is in terms of plate thickness or stiffness.

A set of universal curves was developed where the damping ratio normalized by
the mass ratio was given as a linear function of a reduced frequency factor. These
curves were valid for a constant aspect ratio and a Mach number. However, the plate
material properties, area, and thickness could vary along each curve. If the plate was
not near divergence, then the reduced frequency factor could be further approximated
such that the effect of the fluid on the plate stiffness (an integral evaluation) was
not required. Since most aircraft sidewall panels are not designed to operate near
divergence, the simpler approximation may be useful in predicting acoustic radiation
damping in aerospace applications.

Finally, the acoustic radiation damping may be equal to or greater than the
assumed structural damping over a range of realistic panel sizes. Thus, for higher
subsonic Mach numbers the acoustic radiation damping of the first mode can be the
dominant damping source.

An experiment was designed and experimental modal frequency and dam[;ing
values measured for comparison with the theory. PZT patches (piezo electric
devices) were installed on the plate along with strain gages and an accelerometer.
Unfortunately, the PZT patches interacted electrically and/or mechanically with the
strain gage signals. In addition, the PZT patches were unable to drive the plate above
the vibrations induced by the flow. For these reasons, the flow alone was used to

excite the plate in the present experiments. The plate response was measured by
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strain gages and accelerometers with the modal frequencies and damping calculated
from the measured power spectral density. The repeatability of the flow data was
good. The agreement between measured and theoretical values was at best fair with
an erratic (compared with theory) experimental trend with higher Mach number.
Two general approaches are suggested to improve the experimental-theoretical
correlation. Analytically, a more complex flow may be modeled which includes
the variation in the mean flow speed due to the finite core radius. Experimentally,
performing the test in a low turbulence wind tunnel would more accurately replicate
the analysis presented here. Finally, a better understanding of the effect of PZT

material on the plate response would allow better placement of the instrumentation.
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Appendix A BEAM FUNCTION
APPROXIMATION

The beam functions were approximated using the following analysis to simplify
the integral evaluations in Egs. (2.17) and (2.17s). For a clamped-clamped beam the

exact expressions for the normalized beam function (for 0 < x < 1) is given by

cosfy — coshf3,

We(z) = sitnhfB, — sinf,

(stnhfrz — sinfB,z) + coshf,z — cosf, . (A1)
As r — oo then 3, — QH'TIE Thus Eq. (A1) can be approximated by [10]
W, (z) = sinfrz — cosfrz — (—1) A 31 4 ¢=Hrr, (A2)

For the clamped-clamped beam the approximation, is very close to the exact function,
even for the first few modes, see Figure Al. The approximation eliminates the
computation errors at the higher modes caused by inaccurate calculation of the

hyperbolic functions.
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Appendix B EXPERIMENTAL DECAY PLOTS

The following figures contain the raw decay data which was presented in Table

4.2 and Figure 4.11.
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Figure B1. Accelerometer response for PZT excitation at the 1,1 mode.
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Figure B2. Accelerometer response for acoustic speaker excitation at the 1,2 mode.
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Figure B3. Accelerometer response for PZT excitation at the 1.2 mode.
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Figure B4. Accelerometer response for acoustic speaker excitation at the 1,3 mode.
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Figure B6. Strain gage response for PZT excitation at the 1,3 mode.
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Figure B7. Accelerometer response for PZT excitation at the 1.3 mode.
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